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« C"-finite Iff for each hered’*-subalgB C A,
every hered’"*-subalg ofB which is spatially
Isomorphic toB, Is essential IB;
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C*-subalg ofA contains a non-zer@*-finite
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Type ‘5 and C*-semi-finite algs

(@) Infinite dimC*-finite simpleC™*-algs are of type
’B.
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Type ‘5 and C*-semi-finite algs

(a) Infinite dimC™*-finite simpleC*-algs are of type
B.

(b) If tracial states o separates points of_, then
A 1s C*-finite.

(c) If Ais an infinite dim simple_™-alg with a faithful
tracial state, thenl is of type’B.

(d) Every simpleA F alg, not of the form/C(H ), is of
type’s.

(e) If A s finite (resp, semi-finite, of type II), theA
Is C"*-finite (resp,C*-semi-finite, of typeys).
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Type ¢ algebras
(a) If Ais of typed, then it is of type llI.
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(c) If A is a separable purely infinit€*-alg with
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Type ¢ algebras

(a) If Ais of typed, then it is of type llI.

(b) If A has real rank zero and is purely infinite, then
it Is of typeC.

(c) If A is a separable purely infinit€*-alg with
stable rank one, theA is of typec.
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The case of W*-algs

Let M be a W*-algebra.
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Type factorizations
Let A be aC*-algebra.

(a) d a largest typel (resp,B, ¢, andC*-semi-finite)
heredC*-subalgJy (resp,Jy, Je, andJg;) of A,
which is also an ideal ofl.
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(c) Ja + J Is an essential closed ideal &f.

If e;; is the central open proj of with J,; = her(es;),
then
esf = €7 + e
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(d) A/Jg is C*-semi-finite andA/(Jg )* is of type2l.
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Papers of the speaker can be found at
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A Chinese dragon story

A - FIERE:
ORITHE B BRSSO, TE T4 2 %, = AU, T
HEFT R H TG o
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Quoted fromZhuang-zi(a Chinese philosopher):

“A man Zhu learned the fine skill of killing dragons
from Master Chi. Has spent all his money, he became
a master In three years. However, he then found no
dragon at all in the world.”
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